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Numerical methods for the simulation of the
settling of flocculated suspensions

R. Bürgera, S. Evjeb, K. Hvistendahl Karlsenc,b,∗, K.-A. Lie d

a Institute of Mathematics A, University of Stuttgart, Pfaffenwaldring 57, D-70569 Stuttgart, Germany
b RF-Rogaland Research, Thormølensgt, 55, N-5008 Bergen, Norway

c Department of Mathematics, University of Bergen, Johs. Brunsgt. 12, N-5008 Bergen, Norway
d Department of Informatics, University of Oslo, PO Box 1080, Blindern, N-0316 Oslo, Norway

Abstract

For one space dimension, the phenomenological theory of sedimentation of flocculated suspensions yields a model that consists of
an initial-boundary value problem for a second order partial differential equation of mixed hyperbolic–parabolic type. Due to the mixed
hyperbolic-parabolic nature of the model, its solutions may be discontinuous and difficulties arise if one tries to construct these solutions
by classical numerical methods. In this paper we present and elaborate on numerical methods that can be used to correctly simulate
this model, i.e. conservative methods satisfying a discrete entropy principle. Included in our discussion are finite difference methods and
methods based on operator splitting. In particular, the operator splitting methods are used to simulate the settling of flocculated suspensions.
© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Batch and continuous sedimentation processes are em-
ployed in a variety of industrial applications in which a
solid-fluid suspension is separated into its solid and fluid
components under the influence of gravity. Following the
theory of mixtures of classical continuum mechanics, it is
possible to derive a phenomenological theory for the settling
of ideal and flocculated suspensions. The latter form a com-
pressible sediment layer on the bottom of the sedimentation
vessel, which motivates the expression ‘sedimentation with
compression’.

One of the first mathematically rigorous derivations of
this theory was presented by Concha and Bustos [1], see
also [2,3]. This theory models a suspension as a mixture
of two superimposed continuous media (the solids and the
fluid), and starts from the usual local mass and linear mo-
mentum balances of both components. Introducing constitu-
tive assumptions, simplifying the balances as a result of an
order-of-magnitude study, and restricting the motion to one
space dimension yields an initial-boundary value problem

∗ Corresponding author. Fax:+47-55589672.
E-mail addresses: buerger@mathematik.uni-stuttgart.de (R. Bürger),
steinar.evje@rf.no (S. Evje), kenneth.karlsen@mi.uib.no (K. Hvistendahl
Karlsen), kalie@ifi.uio.no (K.-A. Lie).

for a second order partial differential equation (PDE) for
the volumetric solids concentrationφ. For a non-flocculated
(ideal) suspension, the phenomenological model reduces to
Kynch’s well-known kinematic sedimentation model [4] and
its extensions to continuous thickening [5,6], which are de-
scribed by a first order PDE.

An unusual feature of the governing equation of the
phenomenological theory of sedimentation is its mixed
hyperbolic-parabolic nature, where the mixed type nature
corresponds to the interface between the compression zone,
where the solid effective stressσe varies, and the hindered
settling zone, in which this quantity is assumed to be con-
stant or to vanish. Solid effective stress can be transmitted
when the solid flocs get into contact with each other and
form a network, which is assumed to take place at a critical
concentration valueφ = φc. Assuming that this quantity
is a function ofφ only, we consider constitutive equations
σe = σe(φ) satisfying

σ ′
e(φ) := d

dφ
σe(φ)

{
0 for φ ≤ φc,

> 0 for φ > φc,
(1)

Mathematically, the resulting governing equation behaves
as a nonlinear parabolic PDE beneath the interface region
and as a nonlinear hyperbolic one (corresponding to Kynch’s
theory) above the interface. The location of this interface is
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Nomenclature

Latin letters

a(φ) diffusion function
A(φ) primitive of the diffusion function
f (φ, t) solids flux density function
fbk(φ) Kynch batch flux density function
fD discharge flux
fF feed flux
f 1

F , f 2
F , f 3

F values offF given in Table 1
f 12

F , f 23
F values offF related to transitions

between steady states
F upwind flux
g acceleration of gravity
H(t) solution operator of (19) or (22),

depending on the context
L settling column height/height of

the surface source in an ICT
pe excess pore pressure
q volume average velocity
q1, q2, q3 values ofq given in Table 1
R1, R2, R3 rarefaction waves drawn in Fig. 9
s(·, ·) limiter function used by the second

order upwind method
S1 shock line drawn in Fig. 9
Sf (t) solution operator of (18)
Sfbk(t) solution operator of (24)
Sq(t) solution operator of (23)
t time variable
t1, . . . , t6 control times, see Section 5.3
tn discrete time
T endpoint of simulated time interval
vf fluid phase velocity
vs solids phase velocity
Z spatial variable
zc sediment height
z1
c , z2

c , z3
c values ofzc given in Table 1

zj grid point

Greek letters

α(φ) function relating the solid-fluid
interaction force tovs − vf

1z spatial discretization parameter
1t temporal discretization parameter
1% difference of solids and fluid

mass densities
φ volumetric solids concentration
φc critical concentration value
φD discharge concentration
φ1

D, φ2
D, φ3

D values ofφD given in Table 1
φmax maximum solids concentration
φ0(z) initial concentration distribution
φ1(z), φ2(z),φ3(z) steady states considered in §
φn

j numerical approximation ofφ

φL prescribed concentration value
at z= L

φ1
L, φ2

L, φ3
L values ofφL given in Table 1

φ12
L , φ23

L values ofφL related to transitions
between steady states

φL
j , φR

j extrapolated values used by the
second order upwind method

φ1t (z, tn) operator splitting approximation
of φ

%f fluid density
%s solids density
σ2, σ4, σ6, σ7 propagation velocities considered

in Section 5.3
σe(φ) effective solid stress function
τ local temporal discretization

parameter defined in (21)

in general unknown beforehand, which introduces serious
mathematical complications. In particular, as can be inferred
from the well-established theory of conservation laws, solu-
tions are in general discontinuous and have to be interpreted
in some weak sense. Moreover, it turns out that such weak
solutions are not uniquely determined by the data of the
problem, and additional selection criteria, or entropy condi-
tions, are needed to select the physically relevant one, the
entropy weak solution, among possibly several weak solu-
tions [7–9].

The nonlinear nature of the equation arising in the phe-
nomenological theory rules out analytical solution tech-
niques; consequently, this equation can be solved only
numerically. This is in contrast to the possible construction
of exact solutions in the Kynch theory of sedimentation by
the method of characteristics [5,10,11].

The design of numerical methods for conservation laws,
which could be applied to the Kynch model of sedimenta-
tion, has been subject of numerous papers that have been
published in recent years. Several textbooks provide an ex-
cellent introduction to numerical methods for hyperbolic
conservation laws, see, e.g. [12–15].

An appealing feature of the phenomenological sedimen-
tation model is the fact that one single model equation
can be employed both for the hindered settling process
and for the consolidation of the sediment. Of course, the
distinction between these processes is hidden in the mixed
hyperbolic–parabolic type of this equation. The mathe-
matical and numerical theory of such mixed type equa-
tions has yet to be raised to the same level of maturity as
the equivalent theory of hyperbolic conservation laws. In
fact, it is just recently that papers [16–21] have appeared
that consider numerical methods for this type of PDEs.
These works strongly emphasize the possibility to treat
these equations without explicitly tracking the type-change
interface or having to consider a free boundary value
problem.
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This view is clearly opposed to previous formulations
of sedimentation-consolidation models by, e.g. Shodja and
Feldkamp [23] and Stamatakis and Tien [24], who consider
different equations for the hindered settling and for the con-
solidation zone and emphasize that a unified treatment of
both zones by one equation would cause serious problems.
It is the main objective of this paper to demonstrate that this
is not the case and that the concept of hyperbolic-parabolic
PDEs does not imply particular numerical problems as long
as one follows a few general rules (see below).

The studies [16–21] were motivated by applications par-
tially to sedimentation and partially to two-phase flow in oil
reservoirs [22]. As pointed out in [19,21], difficulties arise
when attempting to solve numerically hyperbolic-parabolic
PDEs using classical methods for parabolic PDEs. In par-
ticular, naive discretizations may fail to produce correct
solutions, even in the limit as the discretization parameters
tend to zero. As a general rule, one should use conservative
methods for simulating the sedimentation model; namely, if
conservative methods converge, then they do so to a (weak)
solution of the model. Moreover, if conservative methods
obey a discrete version of the entropy condition, they con-
verge to the physically correct solution, see [16,19,20].
In this paper, we are concerned with conservative and
entropy satisfying numerical methods for solving mixed
hyperbolic-parabolic PDEs. In particular, numerical meth-
ods that can be used to simulate the batch and continuous
sedimentation of flocculated suspensions are presented and
demonstrated.

2. The mathematical model

We consider the settling of a flocculated suspension in an
ideal continuous thickener (ICT) [6,25], see Fig. 1.

An ICT is a cylindrical vessel showing no wall effects
and in which all field variables are assumed to depend only
on the heightz and timet. At z= L, a surface feed and at
z= 0, a surface discharge are provided for continuous op-
eration. Included as a special case is a settling column for
batch sedimentation, see Fig. 1. In one space dimension,
the phenomenological theory of sedimentation produces the
following four field equations from the mass and linear

Fig. 1. Ideal continuous thickner [26].

momentum balances:

∂φ

∂t
+ ∂

∂z
(φvs) = 0,

∂q

∂z
= 0 or q = q(t), (2)

∂σe

∂z
= −1%φg − α(φ)vr

1 − φ
,

∂pe

∂z
= α(φ)vr

1 − φ
. (3)

Across discontinuities these field equations are replaced
by appropriate Rankine–Hugoniot jump conditions. We re-
fer to [2] and Bürger’s contribution to this special issue [27]
for details on the derivation of the phenomenological theory.
In (2) and (3),q = φvs + (1 − φ)vf is the volume average
velocity of the mixture,vs and vf are the solid and fluid
component velocities,1% = %s − %f , %s and %f are the
solids and fluid densities,g is the acceleration of gravity,pe

the excess pore pressure, andα(φ) a scalar function relating
the solid–fluid interaction force per unit mass to the relative
solid–fluid velocityvr = vs − vf . The material specific be-
haviour of the suspension is described only by the functions
α andσe. One can use the first part of (3) and the definition
of q to deduce that the solids volume flux per unit areaφvs

takes the form

φvs = qφ + φ(1 − φ)vr

= qφ − 1%g
φ2(1 − φ)2

α(φ)

(
1 + σ ′

e(φ)

1%gφ

∂φ

∂z

)
. (4)

We assume thatσe(φ) satisfies condition (1). Introducing
the Kynch batch flux density function

fbk(φ) = −1%gφ2(1 − φ)2

α(φ)

andf (φ, t) = q(t)φ +fbk(φ) and inserting (2) into the first
part of (2), the continuity equation forφ(z, t) reads

∂φ

∂t
+ ∂

∂z
f (φ, t) = ∂

∂z

(
−fbk(φ)

σ ′
e(φ)

1%gφ

∂φ

∂z

)
. (5)

We assumeq(t) ≤ 0 for t ∈ (0, T ), fbk(0) = fbk(φmax)

= 0, andfbk(φ) < 0 for φ ∈ (0, φmax), where 0< φmax ≤ 1
is the maximum solids concentration. For definiteness, we
setfbk(φ) = 0 for φ < 0 andφ > φmax. Eq. (5) is a second
order parabolic equation which forφ < φc degenerates into
the hyperbolic equation of Kynch’s theory of continuous
thickening. Introducing the diffusion function

a(φ) = −fbk(φ)σ ′
e(φ)

1%gφ
, (6)

we see thata(φ) = 0 forφ < φc andφ ≥ φmaxanda(φ) > 0
for φc ≤ φ < φmax. Hence, the mixed hyperbolic-parabolic
nature of the PDE (5) becomes evident. The location of the
type change is in general unknown beforehand.

We assume that fort = 0, an initial concentration profile
φ0(z) is given, and that atz= L, a concentration valueφL(t)

is prescribed for 0≤ t ≤ T . The discharge control atz= 0
corresponds to reducing the solids volume flux acrossz= 0
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to the convective partq(t)φ(0, t). Summing up, the volu-
metric solids concentrationφ(z, t) in the thickener satisfies
the following initial-boundary value problem (IBVP):

∂φ

∂t
+ ∂

∂z
f (φ, t) = ∂

∂z

(
a(φ)

∂φ

∂z

)
,

(z, t) ∈ 5T = (0, L) × (0, T ), (7)

φ(z, 0) = φ0(z), z ∈ (0, L), (8)

fbk(φ) − a(φ)
∂φ

∂z

∣∣∣∣
z=0

= 0 and

φ(L, t) = φL(t), t ∈ (0, T ). (9)

By using the second part of (3), the excess pore pressure
pe can be calculated after the concentrationφ(z, t) has been
calculated and is therefore not included into the formulation
of the initial-boundary value problem.

It is well known that solutions of mixed hyperbolic–
parabolic problems will in general become discontinuous in
finite time, even if the initial and boundary data are infinitely
smooth. It thus becomes necessary to consider weak solu-
tions. However, for given initial and boundary data, a pleni-
tude of weak solutions may exist. To ensure uniqueness, we
therefore consider weak solutions satisfying an additional
condition called the entropy condition, the so-called gener-
alized solutions. The IBVP (7)–(9) was analysed within the
framework of generalized solutions by Bürger and Wendland
[8,9]. In [9], existence and uniqueness of generalized solu-
tions were established under certain smoothness and com-
patibility assumptions on the data and the coefficients of
the problem. An improved analysis can be found in Bürger,
Evje, and Karlsen [7], where, for example, the smoothness
assumptions on the coefficients have been relaxed. In partic-
ular,a(φ) is allowed to be discontinuous, which is of inter-
est since many empirical approaches for the effective solid
stressσe stipulate a jump atφ = φc, see [28,29].

Moreover, it turns out that the propagation velocity of the
concentration discontinuity at the sediment-suspension in-
terface is no longer given by the common Rankine–Hugoniot
conditions in terms of adjacent concentration values only;
rather, the limit of the partial derivative ofA(φ) with re-
spect toz is involved. In most circumstances, this makes the
propagation speed of this interface unpredictable a priori,
in contrast to what is known for the Kynch model, where
the Rankine–Hugoniot condition has been exploited to for-
mulate a control model [30] for continuous sedimentation.

3. Finite difference methods

This section provides the necessary background for the de-
velopment and application of numerical methods for mixed
hyperbolic–parabolic problems. Our prime objective is to
present a few working difference methods in a simple set-
ting so as to ease the development of numerical methods

for the sedimentation model in the next section. The finite
difference methods described below can, however, be easily
modified to solve the full sedimentation model. To focus on
the main ideas, we consider here only the simplified problem

∂φ

∂t
+ ∂

∂z
f (φ)= ∂

∂z

(
a(φ)

∂φ

∂z

)
, φ(z, 0) = φ0(z), (10)

whereφ = φ(x, t) is the unknown function andf = f (φ),

a = a(φ) ≥ 0, φ0 = φ0(z) are given, smooth functions (not
necessarily the ones given in Section 2). It is not difficult to
modify the difference methods below so that time dependent
fluxes and boundary conditions can be taken into account.
The material presented here is based on the series of papers
by Evje and Karlsen [17–19,21].

Selecting a mesh size1z > 0, a time step1t > 0, and an
integerN so thatN1t = T , the value of the difference ap-
proximation at(zj , tn) = (j1z, n1t) will be denoted byφn

j .
There are special difficulties associated with solving mixed
type problems which must be dealt with in developing nu-
merical methods. First of all, as was pointed out in [19,21],
numerical methods based on naive finite difference formu-
lation of the diffusion term may be adequate for smooth so-
lutions but can give wrong results when discontinuities are
present. The following example demonstrates the problem.

Example 3.1 (conservative versus non-conservative dis-
cretization)

Since the focus will be on the discretization of the diffusion
term, we consider here only the pure ‘diffusion’ equation

∂φ

∂t
= ∂

∂z

(
a(φ)

∂φ

∂z

)
= ∂2

∂z2
A(φ),

A(φ) =
∫ φ

0
a(ξ) dξ. (11)

A natural finite difference formulation of(11) is

φn+1
j − φn

j

1t
=

a(φn
j+1/2)

φn
j+1−φn

j

1z
− a(φn

j−1/2)
φn

j −φn
j−1

1z
,

1z

(12)

where φn
j+1/2 = (φn

j + φn
j+1)/2. We refer to(12) as a

non-conservative discretization of(11). On the other hand,
a different but still natural finite difference formulation of
(11) is

φn+1
j − φn

j

1t
=

A(φn
j−1) − 2A(φn

j ) + A(φn
j+1)

(1z)2
. (13)

We refer to(13) as a conservative discretization of(11). It
can be easily be shown that(12) and (13) both are stable
and convergent under the stability condition (see[19])

2 maxφ |a(φ)| 1t

(1z)2
≤ 1. (14)
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Fig. 2. Solutions produced by the non-conservative method (12) (dashed) and the conservative method (13) (solid) at timesT=0.05 (left) andT=1 (right).
The initial condition is shown as dotted. Note that the non-conservative method produces wrong solutions.

Nevertheless, we next demonstrate that(12)produces wrong
discontinuous solutions. To this end, consider(11) with an
initial condition φ0(z) as shown inFig. 2 and a diffusion
functiona(φ) given by

a(φ) =
{

0, for 0 ≤ φ < 2,

1, for 2 ≤ φ ≤ 3,
(15)

Note that sincea(·) ≥ 0 the exact solution is discontinuous
(at two points). InFig. 2, we have plotted the approximate
solutions calculated by(12) and (13) at two different times.
We have used a fine space step1z = 0.001and a time step
1t satisfying(14). Clearly, the two methods produce two
different solutions. In[19], it is mathematically proved that
(13) is the correct discretization. Finally, we mention that in
the parabolic casea(·) > 0 where the solution is smooth,
the two methods(12) and (13) produce the same solution.
In other words, the phenomenon displayed inFig. 2 is a
consequence of the mixed hyperbolic-parabolic nature of the
governing PDE.

In view of Example 3.1, it can be tempting to approximate
the solution of the convection–diffusion problem (10) by the
central differencing method

φn+1
j − φn

j

1t
+

f
(
φn

j+1

)
− f

(
φn

j−1

)
21z

=
A
(
φn

j−1

)
− 2A

(
φn

j

)
+
(
φn

j+1

)
(1z)2

Although this works very well in the strictly parabolic
casea(·) > 0, this discretization is not suitable for the
mixed hyperbolic–parabolic casea(·) ≥ 0. In particular, the
central approximation of the convection fluxf will produce
non-physical oscillations in the vicinity of high gradients of
the solution. In turns out that it is preferable to use upwind
differencing, i.e. a difference method of the form

φn+1
j − φn

j

1t
+

F(φn
j , φn

j+1) − F(φn
j−1, φ

n
j )

1z

=
A(φn

j−1) − 2A(φn
j ) + A(φn

j+1)

(1z)2
, (16)

whereF is the upwind flux. For a monotone flux functionf,
the upwind flux is defined byF(φn

j , φn
j+1) = f (φn

j ) if f ′>0
and F(φn

j , φn
j+1) = f (φn

j+1) if f ′<0. More generally, for
a non-monotone flux functionf, one needs the generalised
upwind flux of Engquist and Osher, see [19]. The upwind
method explicit is stable provided the following stability
condition holds:

max
φ

|f ′ (φ) | 1t

1z
+ 2 max

φ
|a (φ)| 1t

(1z)2
≤ 1

It appears that upwind differencing stabilizes profiles
which are liable to undergo sudden changes, i.e. disconti-
nuities and other large gradient profiles. Therefore upwind
differencing is perfectly suited to the treatment of discon-
tinuities (and thus of the sedimentation model). In fact, it
can be shown mathematically that the upwind method (16)
satisfies a discrete entropy condition and that it converges in
a non-oscillatory manner to the unique generalized solution
of (10), see [19] for details. The same results actually hold
for all monotone difference methods (the upwind method is
a monotone method).

The upwind method (and all other monotone methods) are
at most first order accurate, giving poor accuracy in smooth
regions. To overcome these problems, Evje and Karlsen [17]
used the generalized MUSCL (variable extrapolation) idea to
formally upgrade the upwind method explicit to second order
accuracy. The MUSCL approach is based on a piecewise
linear reconstruction of the cell averages at each time level to
increase the resolution. This approach is today employed in
many numerical methods for hyperbolic conservation laws,
see [12–15]. Although more difficult than in the monotone
case, it can be shown that also the second order method
satisfies a discrete entropy condition and that it converges to
the unique generalized solution of the problem, see [17] for
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details. Let us give an example of a second order upwind
method. To this end, we introduce the extrapolated values

φL
j = φn

j − 1z

2
sn
j , φR

j = φn
j + 1z

2
sn
j ,

wheresn
j is some slope that satisfies

sn
j = ∂

∂z
φ(zj , tn) +O(1z)

and certain monotonicity constraints to ensure that the
overall approximation is non-oscillatory. The second order
method is identified by the choice of a limiter function
s(·, ·) that defines the slopes;

sn
j = s

(
φn

j − φn
j−1

1z
,

φn
j+1 − φj

1z

)
,

and is usually constrained by min(a, b) ≤ s(a, b) ≤
max(a, b). There exists a variety of possible limiterss(·, ·),
see Example 3.2 below and, e.g. [12–15]. The second order
upwind method now takes the form

φn+1
j − φn

j

1t
+

F(φR
j , φL

j+1) − F(φR
j−1, φ

L
j )

1z

=
A(φn

j−1) − 2A(φn
j ) + A(φn

j+1)

(1z)2
. (17)

We note that all three-point monotone methods can be
upgraded to second order accuracy using the generalized
MUSCL approach, see [17]. In the following example we
demonstrate the difference between a first and second order
upwind method:

Example 3.2(first versus second order upwind methods)

In Fig. 3 we display the solutions obtained by the first and
second order upwind methods(16) and (17), respectively.
In the second order method, we have used the so-called
minmod limiter (see, e.g.[12–15])

s (a, b) = 1
2

[
sgn(a) + sgn(b)

]
min (|a| , |b|) .

Fig. 3. Solutions produced by the first order (left) and second order (right) upwind methods (16) and (17), respectively. Initial condition (box like)and
exact solution are both shown as dashed. Approximate solutions are shown solid.

We have calculated the approximate solution at time
T= 0.2 and on a rather coarse grid,1z = 1/15. We have
used the Burgers fluxf (φ) = φ2/2 and the diffusion flux
a(φ) is given in(15). The initial conditionφ0(z) is shown
in Fig. 3. This plot clearly demonstrates how the approxi-
mation of the smooth parts of the solution is improved by
using the second order method.

4. Operator splitting methods

There are essentially two ways of constructing methods
for solving convection–diffusion problems such as (7)–(9).
One approach attempts to preserve some coupling between
the two processes involved (convection and diffusion). The
finite difference methods considered in the previous section
try to follow this approach. Another approach is to split the
convection–diffusion problem into a convection problem and
a diffusion problem. The split problems are then solved se-
quentially to approximate the exact solution of the model.
The intermediate solutions resulting from the use of operator
splitting are numerical artifacts and have no physical equiv-
alence. In the physical problem all the transport processes,
convection and diffusion, take place simultaneously. How-
ever, in the splitting methods these processes are imposed
on the initial condition sequentially. The main attraction of
splitting methods lies, of course, in the fact that one can
employ the optimal existing methods for each subproblem.

In this section, we devise some accurate and efficient
splitting methods for simulating the sedimentation model
(7)–(9). The splitting methods presented here are similar to
the splitting methods that have been used over the years to
simulate multi-phase flow in oil reservoirs. We refer to the
lecture notes by Espedal and Karlsen [22] for an overview
of this activity and an introduction to operator splitting
methods in general. The construction of operator splitting
methods is, of course, not unique, neither with respect to the
choice of splitting nor the choice of numerical methods for
the resulting split problems. In what follows, we present only
two possible splitting methods. More sophisticated methods,
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so-called corrected operator splitting methods, are described
in Karlsen et al. [22,31–33].

4.1. Operator splitting by front tracking

We shall here outline a variant of the operator splitting
method used by Evje and Karlsen [20]. As the boundary
conditions (9) are defined for the unsplit PDE (7), it is
necessary to determine appropriate boundary conditions for
the split equations. In the splitting methods considered in
this paper, the boundary conditions defined by the physi-
cal problem have been directly applied to one of the split
equations. As the simulation characteristics of the methods
are demonstrated for boundary conditions that are more or
less independent of time, the presented results are good.
However, this conclusion may not hold if the boundary con-
ditions are highly time dependent. The treatment of bound-
ary conditions in operator splitting methods is investigated
thoroughly in Bürger, Evje, and Karlsen [16].

The operator splitting used in this section splits the
original IBVP (7)–(9) into the purely hyperbolic IBVP


∂v

∂t
+ ∂

∂z
f (v, t) = 0, (z, t) ∈ 5T ,

v(z, 0) = v0(z), z ∈ (0, L),

v(L, t) = φL(t), t ∈ (0, T ).

(18)

and the second order IBVP


∂v

∂t
= ∂

∂z

(
a (w)

∂

∂z

)
, (z, t) ∈ 5T = (0, L) × (0, T ) ,

w(z, 0) = w0(z), z ∈ (0, L),

fbk(w) − a (w)
∂

∂z

∣∣∣∣
z=0

= 0 w (L, t) = φL (t) , t ∈ (0, T ).

(19)

Note that no boundary condition is specified atz= 0 in
(18). This corresponds to an outflow condition where waves
leave the domain without any form of reflection. For sim-
plicity of notation, we shall denote the effect of the con-
secutive solution steps by ‘solution operators’. To be more
precise, we letSf (t) denote the solution operator taking
the initial datav0(z) to the generalized solution at timet
of splitting:conslov, and writev(z, t) = Sf (t)v0(z) for this
solution. Similarly, we letH(t) denote the operator taking
the initial dataw0(z) to the generalized solution at timet of
(19), and writew(z, t) = H(t)w0(z) for this solution.

Now choosing a splitting step1t > 0 and an integerN
such thatN1t = T , we define the splitting approximation
φ1t by

φ1t (z, (n + 1)1t) :=
[
H(1t) ◦ Sf (1t)

]
φ1t (z, n1t),

(20)

wheren = 0, ṡ, N − 1 andφ1t (z, 0) = φ0(z). A math-
ematical analysis of this splitting procedure can be found
in Evje and Karlsen [20] and in Bürger, Evje, and Karlsen
[16]. In particular, these authors have demonstrated that (20)

satisfies a discrete entropy condition and thus approaches
the unique generalized solution as1t goes to zero. Conse-
quently (20) can be used as a basis for the construction of
numerical methods.

Note that so far we have assumed that the operatorsSf (t)

andH(t) determine exact solutions to their respective split
problems and that discretization has been performed with
respect to time only. In applications, the exact solution op-
eratorsSf (t) and H(t) are replaced by appropriate nu-
merical approximations which involve discretization also
with respect to space. For the hyperbolic problem (18) one
can choose from a diversity of methods described in the
books [12–15] and [34]. For the second order problem split-
ting:parabol, one can also choose from a large collection of
finite difference or element methods, although one should
bear in mind the problem pointed out in Example 3.1 when
choosing a method.

In the particular numerical realization of (20) imple-
mented here, we have used the conservative central method
(13) to solve the second order problem (19). Assuming that
the space step1z > 0 is provided by the user, a local time
step τ = 1t/Nτ (Nτ ≥ 1 an integer) is chosen for the
central method so that the stability condition

2τ

(1z)2
maxw |a(w)| ≤ 1 (21)

is satisfied. The central difference approximation is then

calculated up to timet = 1t (the splitting step) usingτ
as the time step. The boundary condition atz= 0 is written
f(w) − A(w)z = 0 and discretized explicitly by central differ-
ences.

To construct approximate solutions of the hyperbolic
problem (18) we use front tracking as introduced by Dafer-
mos [35]. Suppose that the initial functionv0(z) is piecewise
constant. Then the local solution of the conservation law

∂v

∂t
+ ∂

∂z
f (v) = 0, v(z, 0) = v0(z)

can be constructed by a superposition of solutions of Rie-
mann problems, i.e. solutions of the conservation law with
initial data consisting of two constant states separated by
a simple discontinuity. If the flux is piecewise linear, each
Riemann solution consists exclusively of constant states sep-
arated by shocks. When waves from neighbouring Riemann
problems interact, the interaction will only involve constant
states and therefore lead to new Riemann problems and
the construction can be continued forward in time. Thus,
the construction consists of solving Riemann problems and
tracking straight-line discontinuities. In the general case,
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the initial function is approximated by a step function and
the flux by a piecewise linear function. This way rarefac-
tion waves are approximated by a sequence of small shocks.
Variants of the method have been used by many authors,
see, e.g. Holden and Risebro [34] or Lie [36] for more ref-
erences. In particular, Holden, Holden, and Høegh–Krohn
[37,38] proved that the construction is well-defined and ter-
minate in a finite number of steps, even for non-convex flux
functions, given a finite number of constant states inv0(z).
Front tracking was later reformulated for hyperbolic systems
by Risebro [39] and is in use both as a mathematical tool
and as a numerical method (see [34,36]).

The front tracking method can easily be extended to equa-
tions with variable coefficients, see Lie [40]. Here we will
use a variant of this approach. Due to the special form of
the flux function,f (v, t) = q(t)v + fbk(v), the Riemann
solution can be constructed using only the Kynch batch flux
fbk(v). The discontinuities in the solution then satisfy the
following differential equationz′(t) = q(t)+ sbk, wheresbk
denotes the Rankine–Hugoniot shock speed for the Kynch
batch flux functionfbk. If q(t) is simple, the differential
equation forz(t) can be solved exactly. If not,q(t) is approx-
imated by, e.g. a piecewise linear function and then solved
exactly. The boundary conditions are also easy to include.
The functionφL(t) is approximated by a step function, and
a new Riemann problem is solved for each step or when
a wave interacts with the boundary. In the Kynch theory
the boundary condition atz=0 becomesfbk(v) = 0. This
zero-flux condition is treated by solving a Riemann problem
with a fictitious left statevL satisfyingfbk(vL) = 0. In both
cases, only shocks propagating into the domain are kept in
each Riemann solution. See Karlsen, Lie, and Risebro [41]
for more details.

Finally, we note that the numerical realization of (20)
based on front tracking constitutes a conservative and en-
tropy satisfying numerical method, see [20].

4.2. Operator splitting by finite differencing

We shall in this section outline the operator splitting
method used by Bürger and Wendland [42] and by Bustos
et al. [2], which is slightly different from the method de-
scribed in Section 4.1. This method splits the original IBVP
(7)–(9) into the second order problem


∂w

∂t
= ∂

∂z

(
a(w)

∂w

∂z

)
, (z, t) ∈ 5T = (0, L) × (0, T ),

w(z, 0) = w0(z), z ∈ (0, L),

(22)

the linear convection problem


∂u

∂t
+ q(t)

∂u

∂z
= 0, (z, t) ∈ 5T ,

u(z, 0) = u0(z), z ∈ (0, L),
(23)

and the nonlinear hyperbolic IBVP problem




∂v

∂t
+ ∂

∂z
fbk(v) = 0, (z, t) ∈ 5T ,

v(z, 0) = v0(z), z ∈ (0, L),

fbk(v) − a (v)
∂

∂z

∣∣∣∣
z=0

= 0,

v (L, t) = φL (t) , t ∈ (0, T ).

(24)

If we denote byH(1t), Sq(t), andSfbk(t) the solution
operators of (22), (23), and (24), respectively, the splitting
approximationφ1t can be compactly defined by

φ1t (z, (n + 1)1t)

=
[
Sfbk(1t) ◦ Sq(1t) ◦H(1t)

]
φ1t (z, n1t), (25)

where n = 0, . . . , N − 1 and φ1t (z, 0) = φ0(z). Note
that the ordering of the operators in (25) is different from
the ordering used in (20). Also, the boundary conditions
are taken into account only in the nonlinear hyperbolic step
(24), which is different from the boundary treatment in the
two-step splitting described in Section 4.1. The splitting (25)
is analysed mathematically in [16,20].

In the particular numerical realization of (25) imple-
mented here, we have used the conservative central method
(13) to solve the second order problem (22), a first order
upwind method to solve the linear convection problem
(23), and, finally, a variant of Nessyahu and Tadmor’s
method [43] for solving the nonlinear convection problem
(24). We recall that the Nessyahu and Tadmor method is
a high-resolution conservative method which satisfies a
discrete entropy principle. Consequently, the implemented
splitting method is conservative and entropy satisfying, see
[16]. We do not explicitly state the formulas for the meth-
ods used to solve the split problems. These can, however,
be found in [2] and [42].

5. Simulation of sedimentation with compression

We now demonstrate the operator splitting methods
described in the previous section by applying them to three
problems related to the simulation of sedimentation with
compression. These problems are adopted from Bürger
et al. [44].

5.1. Batch settling of a flocculated suspension

We consider a settling column of heightL = 6 [m] closed
at the bottom (q ≡ 0) and without feed (φL = 0), filled
with a flocculated suspension of the initially homogeneous
concentrationφ0 = 0.123. We use a Kynch batch flux den-
sity function of the Maude and Whitmore type [45], which
is a generalization of the well-known flux density function
proposed by Richardson and Zaki [46],

fbk (φ) = −6.05× 10−4φ (1 − φ)12.59 [m/s]

and the solid effective stress function
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Fig. 4. The Kynch batch flux density functionfbk(φ) (left) and diffusion function a(φ) (right) used in Section 5.1 and Section 5.2.

σe(φ) =
{

0, φ ≤ φc = 0.23
5.35× exp(17.9φ)[N/m2], φ > φc

determined by Becker [47] based on experimental measure-
ments on Chilean copper ore tailings. Note that this choice
for σe leads to a diffusion functiona(φ) that is discontin-
uous, see (6). Furthermore, we use the parameters1% =
%s − %f = 1500 [kg/m3] and g = 9.81 [m/s2]. The flux
and the diffusion functions are plotted in Fig. 4. An analy-
sis of the sedimentation model with discontinuous diffusion
functions is presented in [7]. Fig. 5 shows the settling plot
and some selected concentration profiles for sedimentation
up to final timeT = 345600 [s]≈ 96 [h] computed by
operator splitting (20).

The solution is computed on a grid with 300 cells using
3000 time steps.

The overall quality of the operator splitting solution is
very good (as has been documented in previous studies
[32,33]). However, it might seem strange that the crude split-
ting of the boundary condition atz= 0 gives no visual effect
on the solution. But if we compute the error at the boundary
(boundary residual), we see that it decays exponentially with
time (see Fig. 6). Moreover, the lack of mass conservation
is at most 0.12%.

To make the difference from Kynch’s theory apparent,
we also present a computation performed withσe ≡ 0, see

Fig. 5. Settling plot (left) and concentration profiles (right) for batch settling of flocculated suspension simulated by operator splitting (20).

Fig. 6. Error measured at the boundaryz=0 in the first 50 splitting steps
(normalised by|f |) using the operator splitting defined in (20).

Fig. 7. Notice especially two features of the solution; the
suspension–sediment interface and the much higher concen-
tration close to the boundary.

5.2. Filling and emptying of a continuous thickener

We consider the same parameters as before and assume
that the ICT is initially full of water,φ0 ≡ 0. The aver-
age flow velocity is assumed to be constant and we set
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Fig. 7. Settling plot (left) and concentration profiles (right) for batch settling of an ideal suspension described by the Kynch theory and simulated by
front tracking.

q = −1.5 × 10−5 [m/s]. The ICT will first be filled, then
attain a steady state with discharge concentration 0.39, and
finally be emptied by manipulating the feed flux density
fF = q(t)φL(t) + fbk(φL(t)). Namely, we set

φL(t) =



0.06 for 0< t ≤ 70000[s]≈ 0.81 [days],
0.01077641, for 70000[s]< t ≤ 600000[s]≈ 6.94 [days],
0, for t > 600000[s].

We simulated the process up to timeT = 10 [days]
using 8640 time steps on a 300 grid, corresponding to a
CFL number of 2.8. Fig. 8 shows the settling plot and some
selected concentration profiles for this simulation.

5.3. Transition between steady states

To demonstrate that the three-step splitting method pre-
sented in Section 4.2 is equally suited for simulation of sedi-
mentation with compression, we take the same Kynch batch
flux density functionfbk(φ) and the same effective stress
functionσe(φ) as before and consider continuous sedimen-
tation with piecewise constant average flow velocityq(t) and
feed fluxfF (t).

We start with a steady state, that is a stationary concentra-
tion profile, and then attain two new steady states by manip-
ulatingfF andq appropriately. Steady states are obtained as

Fig. 8. Settling plots (left) and concentration profiles (right) for filling and emptying of a continuous thickener simulated by operator splitting (20).

stationary solutions of Eq. (5). It is assumed that a desired
discharge concentrationφD is prescribed. Then the discharge
flux is fD = qφD. The requirement that at steady state the

discharge flux must equal the feed flux,fD = fF, leads to
an equation from which the concentration valueφL at z= L
can be computed:

qφL + fbk(φL) = qφD. (26)

The sediment concentration profile is then calculated from

dφ

dz
= qφ(z) + fbk(φ(z)) − qφD

a(φ(z))
, z > 0,

φ(0) = φD. (27)

The boundary value problem (27) is solved until the
critical concentration is reached at a certain heightzc

denoting the sediment level. Above this level, the con-
centration assumes the constant valueφL calculated from
(26). The choice ofφD is subject to the requirement
that the concentration increases downwards. See Bürger
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Table 1
Parameters of the steady states considered in Fig. 9

I qi [10−4 m/s] φi
D φi

L f i
F

[
10−4 m/s

]
zc [m]

1 −0.10 0.41 0.0072993552 −0.041 3.10
2 −0.15 0.38 0.0104589127 −0.057 1.77
3 −0.05 0.42 0.0036012260 −0.021 2.49

et al. [44] and Bürger and Concha [48] for details.Consider
the three steady states with parameters given in Table 1.

We now prescribe the steady stateφ1(z) as the initial
concentration profile. After operating the ICT at this steady
state for some time, we then change successively to the
steady statesφ2(z) andφ3(z). The changes inφL(t) andq(t)
will be described in detail now.

The ICT is operated at the steady stateφ1(z) for 0 <

t ≤ t2 = 50 000 [s]. Att = t2, we change the volume aver-
age velocityq to the next (algebraically) smaller valueq2.
However, the value of the feed flux density should remain
constant during this operation, therefore the boundary con-
centration valueφ1

L has to be changed to a new valueφ12
L ,

which is calculated from the feed flux continuity condition

Fig. 9. Simulations of transitions between three steady states in an ICT using the operator splitting method (25): (a) prescribed values ofφL; (b) settling
plot (the iso-concentration lines correspond to the annotated values); (c) prescribed values ofq(t); (d) the numerically calculated discharge concentration
of the target steady states; (e) the numerically computed solids discharge flux, compared with prescribed values of the feed flux.

q2φ12
L + fbk(φ

12
L ) = f 1

F ,

yielding φ12
L = 0.0076397602. The change fromφ1

L to φ12
L

should be performed at such a time that the new valueφ12
L is

present above the sediment level att = t2. The change prop-
agates as a rarefaction wave into the vessel. This rarefaction
wave is marked byR1 in Fig. 9b. We assume that the rele-
vant speed is

σ2 = q1 + f ′
bk(φ

12
L ) = −5.0607× 10−4 [m/s],

therefore the change fromφ1
L to φ12

L is performed at

t1 = t2 + L − z1
c

σ2
= 48 222 [s]≈ 13.4 [h].

It should be noted that the feed flux does not remain
precisely constant; it is different fromf 1

F in the small time
interval [t1,t2], during which we have

fF = f 12
F = q1φ12

L + fbk(φ
12
L ) = f 1

F + (q1 − q2)φ12
L

= −0.04138× 10−4 [m/s].
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From Fig. 9e it becomes apparent that fort > t2, the actual
solids discharge flux densityfD(t) = q2φ(0, t) is larger (in
absolute value) than the feed fluxfF prescribed. This leads
to a slow emptying of the vessel and the sediment level
falls at almost constant speed. It may therefore be estimated
that it will have fallen to the heightz2

c of the next target
steady state byt = 316 560 [s]≈ 87.9 [h]. At that time, the
concentration valueφ2

L corresponding to the new feed flux
densityf 2

F should have propagated to the sediment level.
Again, this change propagates downwards as a rarefaction
wave (marked byR2 in Fig. 9b). The relevant propagation
velocity may be taken as

σ4 = q2 + f ′
bk(φ

2
L) = −4.7746× 10−4 [m/s],

hence we changeφL again fromφ12
L to φ2

L at

t3 = 316 560 [s]+ L − z2
c

σ4
= 311 854 [s]≈ 86.6 [h].

For t > t3, both the value ofq and the feed fluxfF corre-
spond to the steady stateφ2(z) given in Table 1. Although
this value is not prescribed explicitly, we observe in Fig. 9d
and e that both the discharge flux and the discharge concen-
tration converge to the appropriate values pertaining to the
target steady stateφ2(z). At t5 = 600 000 [s]≈ 166.7 [h]
we wish to change to the next steady state by changingq
from q2 to q3. The feed flux above the sediment is assumed
to remain constant. Thereforeφ2

L is changed to the value
φ23

L = 0.0113417003 which is calculated from

q3φ23
L + fbk(φ

23
L ) = f 2

F .

Again, the change fromφ2
L to φ23

L propagates as a rarefac-
tion wave into the vessel (marked byR3 in Fig. 9b). The
valueφ23

L propagates at speed

σ6 = q2 + f ′
bk(φ

23
L ) = −4.6338× 10−4 [m/s],

hence the change is performed at

t4 = t5 + L − z2
c

σ6
= 595 182 [s]≈ 165.3 [h].

Similar to the change fromφ1
L to φ12

L , the feed flux as-
sumes a value in the time interval [t4,t5] which is slightly
different fromf 2

F ; namely, there we have

fF = f 23
F = q2φ23

L + fbk(φ
23
L ) = f 2

F + (q3 − q2)φ23
L

= −0.0559× 10−4 [m/s].

After t = t5, the feed flux exceeds the discharge flux in
absolute value, as can be conceived from Fig. 9e. This causes
a rise of the sediment level, again taking place at apparently
constant speed, and it will have attained the last desired level
z3
c when t = 672 240 [s]≈ 186.7 [h]. At that time, the last

value of the feed fluxf 3
F should be valid above the sediment

level. In contrast to the previous changes ofφL, the change

from φ23
L to φ3

L propagates as a shock (marked byS1 in Fig.
9b) with the speed

σ7 = q3 + fbk
(
φ23

L

)− fbk
(
φ3

L

)
φ23

L − φ3
L

= −5.1391× 10−4 [m/s].

This discontinuity reaches the sediment level at the desired
time if the change fromφ23

L to φ3
L is done at

t7 = 672 240 [s]+ L − z3
c

σ7
= 669 301 [s]≈ 185.9 [h].

After t = t7, no more changes are made. Fig. 9b, d and e
indicate convergence to the third steady state. The simula-
tion is terminated after a simulated time ofT = 300 [h] =
1 080 000 [s].

6. Conclusion

An appealing feature of the phenomenological sedimen-
tation model is that one single equation can be used to
describe both sedimentation and consolidation processes,
i.e. without having to model the suspension–sediment inter-
face as a moving boundary, which would make a separate
interface equation necessary. This view is different from
the approaches taken by Philip and Smiles [49], Pane and
Schiffman [50], Stamatakis and Tien [24], Shodja and Feld-
kamp [23] and, in the case of poydisperse suspensions, by
Shih et al. [51].

In this paper, we have presented numerical methods
that automatically reproduce the discontinuities inherent to
solutions of the mixed hyperbolic-parabolic convection–
diffusion problem modeling sedimentation-consolidation
processes. In particular, we avoid an explicit moving
sediment-suspension interface condition (as in Stamatakis
and Tien [24]), which would have significantly complicated
the development of numerical methods. In fact, it has been
the main objective of this paper to demonstrate that the con-
cept of hyperbolic-parabolic PDEs does not imply severe
numerical problems as long as one employs conservative
methods that obey a discrete entropy principle.

It is a well accepted practice to utilize conservative meth-
ods when solving numerically first order hyperbolic PDEs
[12–15]. Shock waves are the solution features that demand
conservative methods. A non-conservative method yields
solutions with wrong shock strength, wrong shock speed,
and thus wrong shock position. It is well known that if a
conservative method converges, it does so to a weak so-
lution of the conservation law. If the method also satisfies
a discrete entropy principle, the converged solution is the
physical weak solution. In the sedimentation model, the
governing PDE is a nonlinear convection–diffusion equation
of mixed hyperbolic–parabolic type; that is, forφ < φc the
PDE degenerates into hyperbolic PDE provided by Kynch’s
theory of sedimentation, whereas forφ ≥ φc it behaves like
a second order parabolic PDE. Consequently, the numerical
methods for the sedimentation should, of course, employ a
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conservative discretization of the first order flux term. Per-
haps somewhat less obvious is that one should also utilize
a conservative discretization of the second order diffusion
term in the model. In fact, we have demonstrated numeri-
cally (see Example 3.1) that a non-conservative discretiza-
tion of the second order term yields discontinuous solutions
with wrong shock strength and wrong shock location, see
also [19]. To further back up the use of conservative meth-
ods, it can be shown that that if a conservative method for
the sedimentation model converges, it does so to a weak so-
lution of the model. Moreover, if this method also satisfies
a discrete entropy principle, then the converged solution is
the physically correct solution, see [16–21].

We have presented numerical methods that are suitable for
simulation the settling of flocculated suspensions. Both finite
difference methods and methods based on operator splitting
have been considered. The methods are all mathematically
sound in the sense that they use a conservative discretization
of both first and second order terms in the governing PDE,
they have built in a discrete entropy principle, and thus pro-
duce physically correct solutions. For simulation purposes,
we recommend the use of operator slitting methods based on
optimal numerical methods for first order hyperbolic PDEs
and a conservative finite difference discretization of the sec-
ond order part of the model. One should note that if the
chosen hyperbolic solver is a conservative method obeying
a discrete entropy principle, it can be proved that the result-
ing operator splitting method is also a conservative method
obeying a discrete entropy principle, see [16,20]. The rea-
son for choosing operator splitting methods over unsplit dif-
ference methods is partially that splitting methods are more
efficient than unsplit methods.

We are well aware that only the most essential features
of industrial thickeners can be cast into the concept of an
ICT. In particular, phenomena occurring when the sediment
should reach the feed level are not correctly predicted by
this setup, see Lev et al. [52]. A better one-dimensional
concept is that of a settler-clarifier unit, in which the feed
is represented by a singular source term. This configuration
has been intensively studied by Diehl [53–55] for the case
of Kynch’s theory and should also be considered for the
phenomenological theory. A further possible application of
the methods presented here could be the extension to a model
for the settling of polydisperse suspensions (with particles of
different sizes and densities) including compression effects,
see Stamatakis and Tien [24]. Bürger et al. have already
shown [56] that the Nessyahu and Tadmor [43] method can
be successfully employed for the solution of the system of
conservation laws arising from the kinematical theory of
sedimentation of polydisperse suspensions.
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